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Motivation & Background



Motivation

• Pilots need recurring training

• Physical training is expensive

• The “Not-so-grand Challenge” [4]

• Artificial Intelligences (AIs) should:

• Remain challenging by adapting

• Assess and adapt to skill level

• Can be used in Live-virtual-constructive (LVC)

simulations
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Our Contributions

Vision: In the future Artificial Intelligences will be partners for training
humans

Challenges

1. AIs are trained to optimize engagement

metrics which are black-box

2. Training AI can be expensive

3. Engagement outcomes are volatile

4. Humans exploit weaknesses of AIs

Novel Contributions:

• Provide model of objective function, with

uncertainty, to AI

• Gaussian Process Bayesian Optimization

(GPBO)

• Hybrid Repeat/Multi-point Sampling

(HRMS) GPBO
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Background & Previous Work

Previous Work:

• Real-time air combat AI [5]

• Optimizing aerial combat [13, 12, 19, 7]

• Adaptive gaming agents [1, 11, 14]

Shortcomings:

• Don’t take expense of training into account

• Focused on strategic level – not individual behaviors

• Prediction of outcomes and uncertainty in

un-explored configurations
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Methodology



Framing the Problem
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• 1 on 1 aerial combat between blue and red

• AI has tunable behaviors

• Intercept Speed (intspeed)

• Launch Delay (launch)

• Weapon Select Delay (select)

• Min/max azimuth (min/max az)

• Record engagement outcome metrics

• Time to kill (TTK)

• Energy Management

• Mission objectives met

• Time on offense/defense

• Limited to 300 seconds

• Terminates if red/blue is eliminated
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Framing the Problem (continued)

Problem Statement: Efficiently train parametrized AI pilot to spar with
human pilots

• Investigate Blue:intspeed and Blue:launch

• Optimize TTK:

TTK = SimTime if Blue survived

TTK = 600− SimTime otherwise

• Two AIs: Blue→ adaptive, Red→ static

• Only require AI to have behavioral parameters

• Optimize and model TTK simultaneously
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Video – Typical non-optimized engagement
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The outcome TTK metric is volatile

• High noise

• Discontinuities

• Noise magnitude

varies

• Volatile due to:

weather, sensor

noise, human

error, and others
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Bayesian Optimization

• Bayesian Optimization = Optimizing a

(black-box) function while learning about it.

• Bayesian optimization → surrogate or model-based

• Useful for expensive functions

• Acquisition functions selects next location

• Explore/exploit

Algorithm 1 Standard Bayesian Optimization

1: Initialize surrogate function with n training inputs

2: while termination criteria not met do

3: xt = argmaxX a(f (X ))

4: Evaluate y(xt)

5: Add y(xt) and xt to the surrogate function f (X )

and update

6: end while
8



Mathematical Formulation – Surrogate Function

• Surrogate: global model of black-box function

• Gaussian Process [16]

f (x) ∼ GP(m(x), k(x , x ′))

m(x) = E[f (x)]

k(x , x ′) = E[(f (x)−m(x))(f (x ′)−m(x ′))]

Inference:

f∗|X∗,X , f ∼ N (m, σ2)

µc(X∗) = K (X∗,X )K (X ,X )−1 f

2
c(X∗) = K (X∗,X∗)

− K (X∗,X )K (X ,X )−1 K (X ,X∗))

• Màtern Kernel:

kν=3/2 (r) =

(
1 +

√
5r

l

)
exp

(
−
√

3r

l

)
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Mathematical Formulation – Acquisition Function

• Next experiment at argmaxx a(·)
• Use global optimizer – DIRECT [9]

• Cheaper to optimize a(·) than the objective

function

• There are many acquisition functions:

• Expected Improvement (EI)[10]

• Upper Confidence Bound (UCB)[18]

• Thompson Sampling (TS)

• Example: Upper Confidence Bound (UCB)

a(·)UCB(x,β) = µ(x) + βσ(x)
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Practical Considerations

• Bootstrapping GP (i.e. n = 10d) [8]

• Need “good” surrogate to guide the optimization

• Also, helps give model of outcomes

• The GP parameters need to be learned, using MLE

or MAP or X-validation
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Persisting Challenges and Existing Methods

Existing Methods:

• Single Samples (SS) are standard

• Multi-point sampling (MS)

• Batch a(·) – qEI, GP-UCB-PE, and TS [17, 2]

Persisting challenges:

• Hope GP stays “good”

• Trade-off: little data (expensive functions) vs more

data (good surrogate)

• Sensitive to low observation:noise ratio
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Hybrid Repeat/Multi-point Sampling

• Repeated Sampilng (RS) [15, 3]

• Use both RS and MS simultaneously

• Local and Global knowledge every iteration

• Sampling strategy =⇒ use any batch a(·)

13



HRMS (continued)

• What makes this method work? We still want to investigate further.

• RS causes singular covariance matrix

• Hard to perform inference – requires matrix inverse

• RS forces the noise hyperparameter to be relevant

ln p(y |X , θ, ki ) = −1

2
(y −m)TKy (θ, ki )

−1(y −m)− 1

2
ln |Ky (θ, ki )| −

D

2
ln 2π

Ky (θ, ki ) = K (θ, ki ) + σ2
nI
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Results



Experiments

• Run experiments with different RS/MS

configurations

• Evaluate parameter and objective

estimates

• Compare surfaces of final surrogate models
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More Repeatable Optimization
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Better Surrogate Surface
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Better Results, Less Experiments
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Video – TTK 23.4 Seconds
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Summary, Conclusions & Future

Work



Summary and Conclusions

Summary:

• Adaptive artificial agents are important for training humans

• Find optimum behaviors and map objective function with Bayesian Optimization

• Approach is generally applicable for all AI decision making

Conclusions:

• AI jet pilot behaviors can be optimized

using GPBO

• HRMS makes a higher quality surrogate

model

• Better model → better optimization

• Does not require more fxn evals

• Better model → better adaptation

• Model assists in interpreting decisions
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Future Work

Aerial Combat:

• Adapt multiple agents simultaneously

• Include humans in training

• Use AI as tutor/instructor

• Multi-objective learning

GPBO Theory:

• More detailed analysis of why RS helps

• Online adaptation of experimentation

• How to select RS and MS

• Fully Bayesian learning
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Questions?
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Engagement Space
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A Toy Example: Forrester function [6]



HRMS effect on log-likelihood



DIRECT
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